Abstract

Abstract The merger of a neutron star (NS) binary may result in the formation of a long-lived, or indefinitely stable, millisecond magnetar remnant surrounded by a low-mass ejecta shell. A portion of the magnetar’s prodigious rotational energy is deposited behind the ejecta in a pulsar wind nebula, powering luminous optical/X-ray emission for hours to days following the merger. Ions in the pulsar wind may also be accelerated to ultra-high energies, providing a coincident source of high-energy cosmic rays and neutrinos. At early times, the cosmic rays experience strong synchrotron losses; however, after a day or so, pion production through photomeson interaction with thermal photons in the nebula comes to dominate, leading to efficient production of high-energy neutrinos. After roughly a week, the density of background photons decreases sufficiently for cosmic rays to escape the source without secondary production. These competing effects result in a neutrino light curve that peaks on a few day timescale near an energy of ∼1018eV. This signal may be detectable for individual mergers out to ∼10 (100) Mpc by current (next generation) neutrino telescopes, providing clear evidence for a long-lived NS remnant, the presence of which may otherwise be challenging to identify from the gravitational waves alone. Under the optimistic assumption that a sizable fraction of NS mergers produce long-lived magnetars, the cumulative cosmological neutrino background is estimated to be for an NS merger rate of , overlapping with IceCube’s current sensitivity and within the reach of next-generation neutrino telescopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.