Abstract
Aqueous Zn batteries (AZBs) have emerged as a highly promising technology for large-scale energy storage systems due to their eco-friendly, safe, and cost-effective characteristics. The current requirements for high-energy AZBs attract extensive attention to reasonably designed cathode materials with multi-electron transfer mechanisms. This review systematically overviews the development and challenges of typical cathode hosts capable of multiple electron transfer reactions for high-performance Zn batteries. Moreover, we also summarize how to trigger the multi-electron transfer chemistry of cathodes, including transition metal oxides, halogens, and organics, to further boost the energy storage capability of AZBs. Finally, perspectives on critical issues and future directions of the multi-electron transfer battery systems offer novel insights for advanced Zn batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.