Abstract

Aqueous Zn batteries have recently emerged as promising candidates for large-scale energy storage, driven by the need for a safe and cost-effective technology with sufficient energy density and readily accessible electrode materials. However, the energy density and cycle life of Zn batteries have been limited by inherent chemical, morphological, and mechanical instabilities at the electrode-electrolyte interface where uncontrolled reactions occur. To suppress the uncontrolled reactions, we designed a crystalline polymer interphase for both electrodes, which simultaneously promotes electrode reversibility via fast and selective Zn transport through the adaptive formation of ion channels. The interphase comprises an ultrathin layer of crystalline poly(1H,1H,2H,2H-perfluorodecyl acrylate), synthesized and applied as a conformal coating in a single step using initiated chemical vapor deposition (iCVD). Crystallinity is optimized to improve interphase stability and Zn-ion transport. The optimized interphase enables a cycle life of 9500 for Zn symmetric cells and over 11,000 for Zn-MnO2 full-cell batteries. We further demonstrate the generalizability of this interphase design using Cu and Li as examples, improving their stability and achieving reversible cycling in both. The iCVD method and molecular design unlock the potential of highly reversible and cost-effective aqueous batteries using earth-abundant Zn anode materials, pointing to grid-scale energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.