Abstract

Zinc ionic conducting-based gel polymer electrolytes (GPEs) were fabricated from carboxymethyl cellulose (CMC) and three different zinc salts in a mass ratio ranging within 0–30 wt%. The effects of zinc salt and loading level on the structure, thermal, mechanical, mechanical stability, and morphological properties, as well as electrochemical properties of the GPEs films, were symmetrically investigated. The mechanical properties and mechanical stability of CMC were improved with the addition of zinc acetate, zinc sulphate, and zinc triflate, approaching the minimum requirement of a solid state membrane for battery. The maximum ionic conductivity of 2.10 mS cm−1 was achieved with the addition of 15 wt% zinc acetate (ZnA), GPEA15. The supported parameters, indicating the presence of the amorphous region that likely supported Zn2+ movement in the CMC chains, were clearly revealed with the increase in the number of mobile Zn2+ carriers in FT-IR spectra and the magnitude of ionic transference number, the decrease of the enthalpy of fusion in DSC thermogram, and the shifting to lower intensity of 2θ in XRD pattern. The developed CMC/ZnA complex-based GPEs are very promising for their high ionic conductivity as well as good mechanical properties and the ability for long-term utilization in a zinc ion battery.

Highlights

  • Zinc ionic conducting-based gel polymer electrolytes (GPEs) were fabricated from carboxymethyl cellulose (CMC) and three different zinc salts in a mass ratio ranging within 0–30 wt%

  • Fourier-transform infrared spectroscopy (FT-IR) spectroscopy was utilized for understanding the alterations of CMC functional groups when the zinc salts were introduced

  • The development of gel polymer electrolytes (GPEs) for Zn ion battery was the aim of this work, in terms of excellent ionic conductivity as well as good mechanical properties and the ability for long-term utilization

Read more

Summary

Introduction

Zinc ionic conducting-based gel polymer electrolytes (GPEs) were fabricated from carboxymethyl cellulose (CMC) and three different zinc salts in a mass ratio ranging within 0–30 wt%. The incorporation of zinc salts into the CMC matrix can greatly enhance the mechanical properties of the films, which have rarely been reported in the other SPEs and GPEs ­systems[26].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call