Abstract
To harvest directly usable electrical energy from real domestic wastewater, a new power management system (PMS), transistor-based low voltage boosters followed by a voltage rectifier (LVBR), was developed and tested for its energy harvesting performance. Three air-cathode MFCs were individually linked with LVBs, which were electrically stacked in parallel and then connected with a single voltage rectifier (MFC-LVBR). The MFC-LVBR system could increase VMFCto 11.9±0.6V without voltage reversal, which was capable of charging a lithium-ion batteryand supercapacitor-based power banks. When the integrated MFC-LVBR system was linked with a lithium-ion battery, the highest normalized energy recovery (NERCOD) of 0.76kWh/kg-COD (NERvolumeof 0.22kWh/m3) was achieved with a minimal energy loss of 14.4%, whichwas much higher than those previously reported values.Furthermore, the electrical energy charged in the lithium-ion battery successfully powered a DC peristaltic pump requiring a minimum operating power of 0.46W.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have