Abstract

The extraction and separation of uranium (U(VI)) and thorium (Th(IV)) from rare earth elements (REEs) in acidic waste solutions is very important and still challenging. In this paper, a high-efficient sorbent was successfully prepared by functionalization of graphene oxide with phenanthroline diamide (GO-PDA), which exhibited excellent selectivity towards actinides over lanthanides. The sorption behaviors of GO-PDA towards U(VI) and Th(IV) under various conditions were evaluated by batch experiment. Fast sorption kinetics and high sorption capacities were realized for both U(VI) and Th(IV), which reached equilibrium in 60min. The sorption isotherms of both U(VI) and Th(IV) coincided with Langmuir model, while the maximum sorption capacities of U(VI) (pH=5.5) and Th(IV) (pH=4.0) at 298K were calculated to be 718 and 703mg/g respectively, which were much higher than most of the previously reported graphene oxide (GO) based sorbents. GO-PDA also possessed significantly enhanced selectivity for U(VI) and Th(IV) over Eu(III), Nd(III) and Sm(III) compared to pristine GO at ultralow low pH (0−2), with separation factors larger than 23 at pH 0. Most importantly, GO-PDA was made into membrane with porous structure, which achieved fast and efficient separation of U(VI) and Th(IV) from Eu(III), Nd(III) and Sm(III) in aqueous solution. This work demonstrates that GO-PDA is a promising sorbent for efficient selective separation of U(VI) and Th(IV) from REEs in strong acidic waste solutions, which is of great value for nuclear waste management and nuclear fuel recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.