Abstract

With the exponentially increase of dye pollutants, the purification of dye wastewater has been an urgent ecological problem. As a novel type of porous adsorbent, metal-organic frameworks still face challenges in recyclability, agglomeration, and environmentally unfriendly synthesis. Herein, MOF-525 was in-situ growth onto the surface of the chitosan (CS) beads to fabricate MOF-525@CS aerogel. CS was utilized as substrate to uniformly disperse MOF-525, thereby significantly mitigating agglomeration and improving recyclability of MOF-525. The characterization results shown that MOF-525@CS aerogel had a high specific surface area of 103.0 m2·g−1, and MOF-525 was uniformly distributed in the 3D porous structure of CS, and the presence of benzoic acid was detected. The MOF-525@CS aerogel had a remarkable adsorption capacity of 1947 mg·g−1 for Congo red, which is greater than the sum of its parts. MOF-525@CS aerogel also inherited the rapid adsorption ability of MOF-525, removing 80 % of Congo red within 600 min. Such excellent adsorption performance can be attributed to the benzoic acid trapped by CS via CN band to enhance the π-π stacking interactions. Additionally, the utilization of benzoic acid makes the synthesis process of MOF-525@CS aerogel more environmentally friendly. The high-efficient MOF-525@CS aerogel is a competitive candidate for dye pollution adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.