Abstract

Error propagation and word-length-growth are two intrinsic effects influencing the performance of wavelet-based ECG data compression methods. To overcome these influences, a non-recursive 1-D discrete periodized wavelet transform (1-D NRDPWT) and a reversible round-off linear transformation (RROLT) theorem are developed. The 1-D NRDPWT can resist truncation error propagation in decomposition processes. By suppressing the word- length-growth effect, RROLT theorem enables the 1-D NRDPWT process to obtain reversible octave coefficients with minimum dynamic range (MDR). A non-linear quantization algorithm with high compression ratio (CR) is also developed. This algorithm supplies high and low octave coefficients with small and large decimal quantization scales, respectively. Evaluation is based on the percentage root-mean-square difference (PRD) performance measure, the maximum amplitude error (MAE), and visual inspection of the reconstructed signals. By using the MIT-BIH arrhythmia database, the experimental results show that this new approach can obtain a superior compression performance, particularly in high CR situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.