Abstract

Sputter deposition produces dense, uniform, adhesive, and scalable metal contacts for perovskite solar cells (PSCs). However, sputter deposition damages the other layers of the PSC. We here report that the damage caused by sputtering metal contacts can be reversed by aerial oxidation. We support this claim by making PSCs sputtered with Au contacts that exhibit higher efficiencies (18.7%) and stabilities than those made with thermally evaporated Au contacts (18.4%). We performed a series of experiments that show that the post-sputtering oxidation step reconstructs the molecular order of the hole transport layer (HTL) and reverses Au atom diffusion into the HTL. This potential restoration was previously neglected in PSC fabrication recipes because metal contact deposition is generally performed after the HTL oxidation. This result is important for scaling PSCs because sputtering is a superior method for manufacturing optimal-quality coatings or large-area devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.