Abstract

AbstractSurface defects have been a key constraint for perovskite photovoltaics. Herein, 1,3‐dimethyl‐3‐imidazolium hexafluorophosphate (DMIMPF6) ionic liquid (IL) is adopted to passivate the surface of a formamidinium‐cesium lead iodide perovskite (Cs0.08FA0.92PbI3) and also reduce the energy barrier between the perovskite and hole transport layer. Theoretical simulations and experimental results demonstrate that Pb‐cluster and Pb‐I antisite defects can be effectively passivated by [DMIM]+ bonding with the Pb2+ ion on the perovskite surface, leading to significantly suppressed non‐radiative recombination. As a result, the solar cell efficiency was increased to 23.25 % from 21.09 %. Meanwhile, the DMIMPF6‐treated perovskite device demonstrated long‐term stability because the hydrophobic DMIMPF6 layer blocked moisture permeation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call