Abstract

Binary van der Waals heterostructures of graphene (Gr) and transition metal dichalcogenide (TMDC) have evolved as a promising candidate for photodetection with very high responsivity due to the separation of photo-excited electron-hole pairs across the interface. The spectral range of optoelectronic response in such hybrids has so far been limited by the optical bandgap of the light absorbing TMDC layer. Here, the bidirectionality of interlayer charge transfer is utilized for detecting sub-band gap photons in Gr-TMDC heterostructures. A Gr/MoSe2 heterostructure sequentially driven by visible and near infra-red (NIR) photons is employed, to demonstrate that NIR induced back transfer of charge allows fast and repeatable detection of the low energy photons (less than the optical band gap of the TMDC layer). This mechanism provides photoresponsivity as high as ≈3000 A W-1 close to the communication wavelength. The experiment provides a new strategy for achieving highly efficient photodetection over a broad range of energies beyond the spectral bandgap with the 2D semiconductor family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.