Abstract

Recently, inorganic/organic hybrid solar cells have been considered as a viable alternative for low-cost photovoltaic devices because the Schottky junction between inorganic and organic materials can be formed employing low temperature processing methods. We present an efficient hybrid solar cell based on highly ordered silicon nanopillars (SiNPs) and poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The proposed device is formed by spin coating the organic polymer PEDOT:PSS on a SiNP array fabricated using metal assisted electroless chemical etching process. The characteristics of the hybrid solar cells are investigated as a function of SiNP height. A maximum power conversion efficiency (PCE) of 9.65% has been achieved for an optimized SiNP array hybrid solar cell with nanopillar height of 400 nm, despite the absence of a back surface field enhancement. The effect of an ultrathin atomic layer deposition (ALD), grown aluminum oxide (Al2O3), as a passivation layer (recombination barrier) has also been studied for the enhanced electrical performance of the device. With the inclusion of the ultrathin ALD deposited Al2O3 between the SiNP array textured surface and the PEDOT:PSS layer, the PCE of the fabricated device was observed to increase to 10.56%, which is ∼10% greater than the corresponding device without the Al2O3 layer. The device described herein is considered to be promising toward the realization of a low-cost, high-efficiency inorganic/organic hybrid solar cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.