Abstract

CsI(Tl)/HgI/sub 2/ gamma-ray spectrometers have been constructed using 0.5 diameter detectors which show excellent energy resolution: 4.58% FWHM for 662 keV /sup 137/Cs gamma-ray photons. Further efforts have been focused on optimization of larger size (/spl ges/1 diameter) detector structures and improvement of low noise electronics. In order to take full advantage of scintillation detectors for high energy gamma-rays, larger scintillators are always preferred for their higher detection efficiencies. However the larger capacitance and higher dark current caused by the larger size of the detector could result in a higher FWHM resolution. Also, the increased probability of including nonuniformities in larger pieces of crystals makes it more difficult to obtain the high resolutions one obtains from small detectors. Thus for very large volume scintillators, it may necessary to employ a photodiode (PD) with a sensitive area smaller than the cross-section of the scintillator. Monte Carlo simulations of the light collection. For various tapered scintillator/PD configuration were performed in order to find those geometries which resulted in the best light collection. According to the simulation results, scintillators with the most favorable geometry, the conical frustum, have been fabricated and evaluated. The response of a large conical frustum (top 2 bottom-1 2 high) CsI(Tl) scintillator coupled with a 1 HgI/sub 2/ PD was measured. The energy resolution of the 662 keV peak was 5.57%. The spectrum shows much higher detection efficiency than those from smaller scintillators, i.e., much higher peak-to-Compton ratio in the spectrum. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call