Abstract

Utilizing superhydrophobic micro/nanostructures to enhance condensation heat transfer (CHT) of copper surfaces has attracted intensive interest in recent years due to its significance in multiple industrial fields including nuclear power generation, thermal management, water harvesting, and desalination. However, superhydrophobic surfaces have instability risk caused by microcavity defect-induced vapor penetration and/or hydrophobic chemistry destruction. Here, we report a superwetting copper hierarchical microgroove/nanocone (MGNC) structure strategy that can realize high-efficiency CHT over a whole range of surface subcooling. By regulating groove width, fin width, groove depth, and nanostructure growth time, we obtain the optimal MGNC structure, where the CHT coefficient is 121% and 107% higher than that of hydrophilic flat surfaces at surface subcooling of 2 and 15 K, respectively. Such remarkable enhancement can be ascribed to the synergy of three interface effects: more nucleation sites for phase-change energy exchanging, thinner condensate films for reducing thermal resistance, and parallel microchannels for timely drainage. Compared with superhydrophobic strategies, our strategy not only can be mass-producible but also has other inherent advantages: no microcavity-induced performance failure risk as well as being free of chemistry modification, which makes the fabrication process simpler and more economic. Hierarchical micropillar/nanocone structure is also fabricated as the contrast sample for highlighting the superiority of the superwetting MGNC structure in enhancing CHT. This work not only enriches research systems of superwettability surfaces but also helps develop high-performance chips' cooling devices and explore more potential applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.