Abstract

In this article, we propose a bilaterally transmitted domino-type multiload inductive power transfer (IPT) system for constant-voltage (CV) outputs, low voltage attenuation, and high efficiency. There are three major contributions. First, the series–series/parallel (S–SP) topology is developed to design the multiload IPT system, which can realize the load-independent CV outputs without using compensation inductors, enabling a compact IPT system. Second, a bilateral IPT structure is proposed with two parallel power transfer routes to mitigate the practical output voltage attenuation issue, resulting in a better CV property. Third, system efficiency is improved by the proposed bilateral IPT structure. With the bilateral S–SP compensated multiload IPT design, the output voltage attenuation analysis and system efficiency are investigated considering parasitic resistances. A 70 W six-load bilateral IPT prototype is implemented and compared with the unilateral counterpart. With <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> = 0.26 and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</i> = 300, the proposed bilateral IPT system validates an improved CV output with a small attenuation rate of 10.22%, which is much lower than the unilateral one. The maximum efficiency achieves 90.39%, showing 5.17% higher than the unilateral IPT system in the identical load condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.