Abstract

In this paper, we investigate the differences between optical and electrical properties of near-ultraviolet (NUV) InGaN/GaN multi-quantum well light-emitting diodes (LEDs) grown on GaN substrate with a roughened back-side on the N-face surface of GaN substrate through a chemical wet-etching process, and on pattern sapphire substrate (PSS). Back-side etching-treated NUV-LEDs have larger output power than conventional NUV-LEDs, NUV-LEDs with wider wells and NUV-LEDs grown on PSS. When the NUV-LEDs were operated at a forward current of 20 mA, the output power of back-side etching-treated NUV-LEDs was improved by approximately 100, 106 and 8% compared with that of conventional NUV-LEDs, NUV-LEDs with wider wells and NUV-LEDs grown on PSS, respectively. This larger enhancement results from the improved light extraction that was attributed to the different transmittance because a hexagonal pyramid on the N-face GaN that was etched formed at the stable crystallographic etching planes of the GaN {1011} planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call