Abstract

Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.

Highlights

  • Blood samples are seen as key biospecimens to drive the future of personalized medicine since they can be used to detect, diagnose and/or monitor diseases through genomic and transcriptomic analyses

  • High DNA stability in blood products stored under inert atmosphere two novel applications for BC and WBC storage at ambient temperature currently marketed by Imagene

  • Our procedure allowing a strong reduction in volumes appears as a valuable alternative to whole blood storage for DNA based analyses

Read more

Summary

Introduction

Blood samples (or liquid biopsies) are seen as key biospecimens to drive the future of personalized medicine since they can be used to detect, diagnose and/or monitor diseases through genomic and transcriptomic analyses. They may be processed to produce serum, plasma, white blood cells (WBC) or buffy coat (BC) fractions. High DNA stability in blood products stored under inert atmosphere two novel applications for BC and WBC storage at ambient temperature currently marketed by Imagene. This includes the use of specific Imagene proprietary solutions. This does not alter our adherence to PLOS ONE policies on sharing data and materials

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.