Abstract

Heme reduction of ferric lactoperoxidase (LPO) into its ferrous form initially leads to the accumulation of the unstable form of LPO-Fe(II), which spontaneously converts to a more stable species, the two of which can be identified by Soret peaks at 440 and 434 nm, respectively. Our data demonstrate that both LPO-Fe(II) species are capable of binding O(2) at a similar rate to generate the ferrous-dioxy complex. Its formation with respect to O(2) was first order and monophasic and with rate constants of k(on) = 3.8 x 10(4) m(-1) s(-1) and k(off) = 11.2 s(-1). The dissociation rate constant for the formation of LPO-Fe(II)-O(2) is relatively high, in contrast to hemoprotein model compounds. This high dissociation rate can be attributed to a combination of effects that include the positive trans effect of the proximal ligand, the heme pocket environment, and the geometry of the Fe-O(2) linkage. Our results have also shown that the decay of the LPO-Fe(II)-O(2) complex occurs by two sequential O(2)-independent steps. The first step involves formation of a short-lived intermediate that can be characterized by its Soret absorption peak at 416 nm and may be attributed to the weakening of the Fe(II)-O(2) linkage with a rate constant of 0.5 s(-1). The second step is spontaneous conversion of this intermediate to generate the native enzyme and presumably superoxide as end products with a rate constant of 0.03 s(-1). A comprehensive kinetic model that links LPO-Fe(II)-O(2) complex formation to the LPO catalase-like activity, combined with the classic catalytic cycle, is presented here.

Highlights

  • Hydrogen peroxide (H2O2) is freely diffusible through biological membranes, and its overproduction or inhalation is extremely destructive to cells and tissues [1, 2]

  • We have demonstrated that the presence of pathophysiologically relevant levels of peroxidases and H2O2 serves as a catalytic sink for NO and reversibly inhibits NO-mediated bronchodilation of preconstricted tracheal rings (14 –16)

  • Initial Rapid Spectroscopic Characterization of O2 Binding to Ferrous LPO—To determine the role of the LPO-Fe(II)-O2 complex in catalytic activity, as well as to further our understanding of the potential role of LPO in catalase-like function, the direct reaction between LPO-Fe(II) and O2 was carried out using rapid kinetic measurements

Read more

Summary

Introduction

Hydrogen peroxide (H2O2) is freely diffusible through biological membranes, and its overproduction or inhalation is extremely destructive to cells and tissues [1, 2]. Addition of a slight excess of dithionite to an anaerobic solution of LPO-Fe(III) initially caused rapid buildup of an unstable LPO-Fe(II) intermediate that can be characterized by its Soret absorption peak at 444 nm.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.