Abstract

Entanglement-based quantum key distribution (QKD) is an essential ingredient in quantum communication, owing to the property of source-independent security and the potential on constructing large-scale quantum communication networks. However, implementation of entanglement-based QKD over long-distance optical fiber links is still challenging, especially over deployed fibers. In this work, we report an experimental QKD using energy-time entangled photon pairs that transmit over optical fibers of 242 km (including a section of 19 km deployed fibers). The QKD is realized through the protocol of dispersive-optics QKD (DO-QKD) with high-dimensional encoding to utilize coincidence counts more efficiently. A reliable, high-accuracy time synchronization technology for long-distance entanglement-based QKD is developed based on the distribution of optical pulses in quantum channels. Our system operates continuously for more than 7 d without active polarization or phase calibration. We ultimately generate secure keys with secure key rates of 0.22 bps and 0.06 bps in the asymptotic and finite-size regimes, respectively. It shows that entanglement-based DO-QKD is reliable for long-distance realization in the field if its high requirement on time synchronization is satisfied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call