Abstract

Many prediction methods have been proposed in the literature, but most of them ignore heterogeneity between populations. Either only data from a single study or population is available for model building and evaluation, or when data from multiple studies make up the training dataset, studies are pooled before model building. As a result, prediction models might perform less than expected when applied to new subjects from new study populations. We propose a linear method for building prediction models with high-dimensional data from multiple studies. Our method explicitly addresses between-population variability and tends to select predictors that are predictive in most of the study populations. We employ empirical Bayes estimators and hence avoid selection bias during the variable selection process. Simulation results demonstrate that the new method works better than other linear prediction methods that ignore the between-study variability. Our method is developed for classification into two groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.