Abstract
Four types of contractile activity were identified and characterised in the isolated triple haustrated proximal colon of the rabbit using high-definition spatiotemporal mapping techniques. Mass peristalses were hexamethonium-sensitive deep circular contractions with associated taenial longitudinal contractile activity that occurred irregularly and propagated rapidly aborad, preceded by a zone of local lumen distension. They were sufficiently sustained for each event to occupy the length of the isolated colonic segment and the contraction persisted longer orally than aborally, the difference being more pronounced when lumen contents were viscous. Haustra were bounded by deep even-spaced ring contractions that progressed slowly aborad (haustral progression). Haustral formation and progression were hexamethonium-sensitive and coordinated across intertaenial domains. Ripples were hexamethonium-resistant phasic circular contractions that propagated predominantly orad at varying rates. In the presence of haustra, they were uncoordinated across intertaenial domains but were more coordinated when haustra were absent. Fast phasic contractions were relatively shallow hexamethonium-resistant contractions that propagated rapidly in a predominantly aborad direction. Fast phasic circular contractions were accompanied by taenial longitudinal muscle contractions which increased in amplitude prior to a mass peristaltic event and following the administration of hexamethonium. On the basis of the concurrence and interaction of these contractile activities, we hypothesise that dual pacemakers are present with fast phasic contractions being modulated by the interstitial cells of Cajal in the Auerbach's plexus (ICC-MY) while ripples are due to the submucosal ICC (ICC-SM). Further, that ICC-SM mediate the enteric motor neurons that generate haustral progression, while the intramuscular ICC (ICC-IM) mediate mass peristalsis. The orad movement of watery fluid was possibly due to ripples in the absence of haustra.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have