Abstract

We report exceptional productivity and associated water-use efficiency across seasons for commercial crops of rainfed spring wheat and grain sorghum growing on stored soil water in Vertosols on the Liverpool Plains, central-eastern Australia. Agreement between the independently measured terms of evapotranspiration (ET) and the soil water balance (in-crop rainfall + δsoil water) was achieved within acceptable uncertainty across almost all measurement intervals, to provide a reliable dataset for the analysis of growth and water-use relationships without the confounding influence of water outflow either overland or within the soil. Post-anthesis intrinsic transpiration efficiency (kc ) values of 4.7 and 7.2 Pa for wheat and sorghum, respectively, and grain yields of 8 and 7 t/ha from ET of 450 and 442 mm (1.8 and 1.6 g/m2.mm), clearly demonstrate the levels of productivity and water-use efficiency possible for well-managed crops within an intensive and productive response cropping sequence. The Vertosols in which the crops were grown enabled rapid and apparently unconstrained delivery of significant quantities of subsoil water (34% and 51% of total available) after anthesis, which enabled a doubling of pre-anthesis standing biomass and harvest indices of almost 50%. Durum wheat planted into only 0.30 m of moist soil and enduring lower than average seasonal rainfall, yielded less biomass and grain (2.3 t/ha) with lower water-use efficiency (0.95 g/m2.mm) but larger transpiration efficiency, probably due to reduced stomatal conductance. We argue that crop planting in response to stored soil water and management for high water-use efficiency to achieve high levels of average productivity of crop sequences over time can have a significant effect on both increased productivity and enhanced hydrological stability across alluvial landscapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.