Abstract

Fatty acid ethyl esters (FAEEs) derived from vegetable oils and ethanol are promising bio-based chemicals for various applications such as biofuel, monomers for polyesters, and fine chemicals. However, the limited conversion and yield are obtained in the conventional methods due to low boiling point of ethanol that thus requires conducting the reaction at low temperature. This work demonstrates high yield of FAEEs from soybean, rice bran and palm oil with ethanol by performing the transesterification at high temperatures of 150-200°C by using CaO catalyst in a high pressure reactor. The results demonstrate the complete reaction for all vegetable oils with low ethanol to oil molar ratio of 6:1 and 1 wt.% CaO catalyst. Higher reaction temperature results in faster reaction while keeping high conversion of ≥ 99.0%. The unsaturated components in FAEE products are consistent with their original fatty acid chain. Moreover, the high conversion can be achieved even in the reaction conducted with low ethanol to oil molar ratio of 4.5:1 and 0.5 wt.% CaO catalyst at 180 °C in the palm oil transesterification. The catalyst can be reused for at least 3 times with the conversion higher than 94.0%. In addition, the activation energy (Ea), enthalpy of activation (ΔH‡), entropy of activation (ΔS‡) and Gibbs free energy of activation (ΔG‡) are also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.