Abstract

Coriander leaves are widely used in cooking throughout the world. Thermal degradation kinetics of chlorophyll a, b, and total chlorophyll in coriander leaf puree was investigated at varying levels of pH (4.5–8.5) and processing temperature (80–145°C). Coriander puree at pH 4.5 was processed at 80° to 100°C, whereas that at pH 5.5 to 8.5 was processed at 105° to 145°C. Chlorophyll degradation followed first-order reaction kinetics. Good agreement was found between estimated and experimental chlorophyll retention in all cases (R2 > 0.80). Activation energies ranged from 6.57 to 96.00 kJ/mol. Reaction rate and activation energy data indicated that chlorophylls were more stable at alkaline pH. Transition state theory was applied to estimate the enthalpy, entropy, and Gibbs free energy of activation. Enthalpy of activation (ΔH#) ranged from 3.46 to 91.99 kJ/mol, whereas entropy of activation (ΔS#) ranged from −0.265 to −0.047 kJ/(mol K). The overall free energy change was 107.55 kJ/mol. Results indicated that, the compensation effect did not exist for chlorophyll degradation in coriander puree during thermal processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.