Abstract

Novel micro-scale reaction devices are progressing in various applications. Whereas, specialized gas-producing reactors of high conversion at micro/mini scale remain challenging and are rarely explored, but are needed urgently in new generation vehicles and aerospace applications. In this work, two kinds of high-aspect-ratio flat channel (200 μm depth, 5.0 mm width, and 40.0 mm length) microreactors with platinum foil catalyst, named as inlet reactors and outlet reactors, are designed and tested for H2O2 decomposition. The wavelet transform method is applied to analyze the effects of reactant flow rate and pin–fin configuration on flow instability in both the time domain and the frequency domain. The inlet reactors utilize periodic flow pattern transitions to achieve an independence of conversion on reactant flow rate. For outlet reactors, the upstream compressible slug volume and the backflow are restricted by the pin–fin array, and thus the H2O2 decomposition reaches a conversion of 59.0% at 5 ml/h reactant flow rate. This conversion is 300% higher than those of H2O2 decomposition in microchannel reactors ever reported in the literature. The results from this work can be used for the design and manufacturing of micro-scale reactors for gas involved applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.