Abstract

High contrast imaging (HCI) systems rely on active wavefront control (WFC) to deliver deep raw contrast in the focal plane, and on calibration techniques to further enhance contrast by identifying planet light within the residual speckle halo. Both functions can be combined in an HCI system and we discuss a path toward designing HCI systems capable of calibrating residual starlight at the fundamental contrast limit imposed by photon noise. We highlight the value of deploying multiple high-efficiency wavefront sensors (WFSs) covering a wide spectral range and spanning multiple optical locations. We show how their combined information can be leveraged to simultaneously improve WFS sensitivity and residual starlight calibration, ideally making it impossible for an image plane speckle to hide from WFS telemetry. We demonstrate residual starlight calibration in the laboratory and on-sky, using both a coronagraphic setup, and a nulling spectro-interferometer. In both case, we show that bright starlight can calibrate residual starlight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.