Abstract

Cephalopods offer a fascinating dynamic reflecting system to create desired colors and patterns through contracting and releasing their soft skins in response to environmental stimuli. Inspired by this natural display strategy, we designed a novel dynamic reflecting system based on pneumatic micro/nanoscale surface morphing. This system consists of a thin metal skin/elastomer bilayer modulated by a microfluidic-based gas injector. Benefited from the "wrinkled-specular" transition of the metal's surface under a small pneumatic actuation (4 kPa), an unprecedented reflectance contrast of 93 for broad-band (500-750 nm) modulation is achieved. This remarkable response also has excellent cycle stability (>2500 times) and fast response time (∼0.2 s). These advantages enable a robust and ultrasensitive optical gas pressure sensor with a sensitivity of 178 kPa-1, which is 3-4 orders of magnitude higher than those of conventional optical gas pressure sensors based on either a Fabry-Pérot interferometer or a Mach-Zehnder interferometer. Moreover, as proof-of-concept applications, we also experimentally demonstrated a curvature-variable convex mirror and noniridescent dynamic display, suggesting that our pneumatically dynamic reflecting system will potentially broaden the applications in adaptive optical devices, sensors, and displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call