Abstract

Biomass-derived carbon materials, especially from wood, have attracted great interests in electromagnetic interference (EMI) shielding ascribed to their sustainability and unique porous structures. However, it still lacks an effective approach to optimize its shielding performance through the microstructure design. Here, core@shell structure nickel encapsulated wood-derived porous carbon (PC) is prepared to improve the EMI shielding performance of porous carbon, in which the high-conductivity nickel shells is obtained through a chemical plating approach. The shielding effectiveness (SE) can reach 83 dB at 9.5 GHz, which is much higher than other reported shielding materials. Experimental results coupled with numerical simulations indicate that the surface and interface electric field distributions could result in a rapid transportation of EM energy and thus enhance the EMI shielding performance. Moreover, the shielding thin films prepared by such microparticles could demonstrate a superior SE of 104.5 dB with a normalized SE of 139.4 dB/mm. Our study opens a new pathway for designing EMI shielding materials based on biomass-derived core@shell structural carbon materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call