Abstract

Solid polymer electrolytes (sPE) offer a pathway for safer, less flammable lithium batteries. However, developing a polymer that provides high Li+ mobility as well electrochemical stability remains a challenge, because ion conductive functional units in the polymer main-chain (e.g., polycarbonate and polyether) usually suffer from poor electrochemical stability at high and low potentials. Herein, an sPE with pendent carbonate on a hydrocarbon backbone has been designed and synthesized to overcome conductivity and electrochemical stability problems. This pendant polycarbonate is different from conventional polycarbonate electrolytes because the carbonate moiety is in the sidechain, which mitigates polycarbonate backbone stability problems while still providing high ionic conductivity when used with a plasticizer. Conductivity as high as 1.1 mS cm−1 at 22 °C was obtained. Stable lithium metal plating and stripping using the sPE was observed for 1,200 h and electrochemical stability up to 4.6 V vs Li+/Li has been demonstrated. The low interfacial resistance (<160 ohm∙cm2 at 22 °C) and reasonable ionic conductivity have enabled acceptable cycling performance in a Li-LiFePO4 battery at 0.98 mA cm−2 for 2,300 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.