Abstract

CuCe/Ti-A and CuCe/Ti-R catalysts were prepared using anatase TiO2 (TiO2-A) and rutile TiO2 (TiO2-R) as supports using the incipient wetness impregnation method for the carbon monoxide (CO) oxidation reaction and were compared with a CuCe-C catalyst prepared using the co-precipitation method. The CuCe/Ti-A catalyst exhibited the highest activity, with complete CO conversion at 90 °C, when the gas hourly space velocity was 24000 ml·g−1·h−1 and the CO concentration was approximately 1% (vol). A series of characterizations of the catalysts revealed that the CuCe/Ti-A catalyst has a larger specific surface area, more Cu+ species and oxygen vacancies, and the Cu species of CuCe/Ti-A catalyst is more readily reduced. In situ FT-IR results indicate that the bicarbonate species generated on the CuCe/Ti-A catalyst have lower thermal stability than the carbonate species on CuCe/Ti-R, and will decompose more readily to form CO2. Therefore, CuCe/Ti-A has excellent catalytic activity for CO oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call