Abstract

Metal nanoparticles and carbon nanotubes have been shown to possess high electrocatalytic activity. Indium tin oxide (ITO) is a popular electrode material, but the electro-catalytic properties of its nano-materials have not been reported. We demonstrate here for the first time facile electrocatalytic oxidation of ascorbic acid on ITO nanoparticle-modified electrodes. Compared to the conventional ITO thin film electrode, the voltammetric peak potential for ascorbic acid oxidation was lowered by 800 mV on ITO nanoparticle-modified electrodes to a potential similar to metal electrodes. The ITO nanoparticle was composed of 90% In 2O 3 and 10% SnO 2. Since the electrocatalytic activity was also found on In 2O 3 nanoparticle electrodes but not on SnO 2 nanoparticle electrodes, the In 2O 3 composition in ITO nanoparticle is mainly responsible for the high activity. In photoluminescence measurement, two intense emission peaks at 415 nm and 438 nm associated with surface oxygen vacancies were observed on the semiconductor electrodes. It was hypothesized that the oxygen vacancies could be the active sites for electrocatalytic reactions. A linear relationship between the oxidation current and ascorbic acid concentration was found in the range of 10 μM to 5 mM, with a lower detection limit of 5 μM and 7.9% RSD ( n = 11). The high electro-catalytic activity and transmittance of In 2O 3 and ITO nanoparticle electrodes make them potentially very useful in opto-electronic devices and chemical/bio-sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.