Abstract

Single-atom catalysts (SACs) for the hydrogen evolution reaction (HER) is an efficient electrochemical pathway to produce the green production. However, the development of HER process is hampered by the lack of high-performance electrocatalysts. In this work, we proposed a new π-d conjugated structure of the Ti3B3N3S6 monolayer as the single-atom catalysts for the HER process by using the density functional theory (DFT) calculations. The calculated results show that the Ti atom is active site of the Ti3B3N3S6 monolayer with the high catalytic activity (ΔGH = –0.14 eV) for HER. The electronic properties of the Ti3B3N3S6 monolayer were explored by the electron localization function (ELF), Bader charge analysis and the polarized density of states (PDOS) density analysis. The Ti3B3N3S6 monolayer can promote the electronic transfer during the HER process, which indicates taht the Ti3B3N3S6 monolayer can is considered to investigate the catalytic activity for HER. The Gibbs free energy of H atoms adsorption on the Ti3B3N3S6 monolayer is –0.14 eV. Furthermore, the origin of high catalytic activity for the Ti3B3N3S6 monolayer was explored by the analysis the PDOS of the H adsorption on the Ti3B3N3S6 monolayer. Therefore, our work propose a new and high catalytic single-atom catalyst for the HER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call