Abstract

For the use of biologically produced H2, removal of CO2 is an indispensable process. Unlike conventional CO2 removal methods, this study proposed a self-generated high-pressure dark fermentation (HPDF) process as a novel strategy for directly producing high-calorific bio-H2. The pressure was automatically increased by self-generated gas, while the maximum pressure inside fermenter was restricted to 1, 3, 5, 7, and 10 bar in a batch operation. As the pressure increased from 1 to 10 bar, the H2 content increased from 55% to 80%, whereas the H2 yield decreased from 1.5 to 0.9 mol H2/mol hexoseadded. The highest H2 content of 80% was obtained at both of 7 and 10 bars. Increased lactate production with increased abundance of lactic acid bacteria was observed at high-pressure. Despite the lower H2 yields at high-pressure conditions, HPDF was found to be economically beneficial for obtaining high-calorific bio-H2 owing to the low CO2 removal cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.