Abstract

Abstract In this paper, an extremely birefringent PCF based on a modified decagonal (MD-PCF) arrangement is studied for broadband compensation covering the S-, C- and L-communication bands wavelength ranging from 1460 to 1625 nm. It is made known in theory that it is conceivable to attain negative dispersion coefficient about − 448 to − 835 ps/nm/km covering S-, C- and L-communication bands as well as a relative dispersion slope near to single mode fiber (SMF) of 0.0036 nm−1. On the basis of simulation results incorporating finite-element method based COMSOL multiphysics software, birefringence is obtained as high as 1.7 × 10−2, which is definately greater than conventional step-index fiber (SIF) and circular air- holes PCF so far. We also discuss the characteristics of chromatic dispersion, effective area and confinement loss of the designed PCF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call