Abstract

In order to improve the energy and power density of all-solid-state supercapacitor, more attention is currently focused on the development of electrodes and electrolyte materials with various chemical structure and compositions. However, current studies rarely report hydrogel electrodes with high content of active materials (i.e. > 20.0 wt%), and study their influence on the performance of supercapacitors. Here, a double-network hydrogel electrode was developed and prepared by blade-coating and 3D printing for application in all-solid-state supercapacitor. Moreover, the hydrogel electrode has an unusually high content (25.0 wt%) of active material, leading to high area specific capacitance (871.4mF/cm2) and area energy density (0.14 mWh/cm2 at 0.27 mW/cm2.). This study opens a new pathway to develop high-performance all-solid-state supercapacitors on large-scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.