Abstract

Bacterial infections have become one of the top ten public health concerns worldwide. These problems are aggravated with the emergence of multi-drug resistant bacterial strains. Thus, it is necessary to adopt novel technological strategies, such as development of bionanomaterials to prevent the infection, and treat this kind of bacteria. At this regard, the chemical modification of chitosan (Cs), by the covalent attachment of a hydrocarbon chain (octanoic acid), was developed to obtain hydrophobic chitosan (HCs). Then, HCs was used to synthetize nanoparticles using the well-known ionotropic gelation approach, optimizing the parameters, such as the TPP/HCs ratio and pH solution to get stable nanoparticles. Then, carvacrol (CAR) was loaded into NPs (HCs-CAR NPs) using different concentrations of 25%, 50% and 75% (%w/w CAR/HCs). The physicochemical properties for HCs-CAR NPs prepared at 50% of CAR stood out from the rest, showing a spherical morphology, with a size of 200 nm, Z potential of 10.4 mV and encapsulation efficiency of 56.28%. These formulations were chosen to evaluate the antibacterial activity, using Gram-negative (Escherichia coli) and Gram-positive bacterial model (Staphylococcus aureus). The HCs-CAR NPs showed great activity against both bacterial models, being more effective against Gram (+) strain (S. aureus), suggesting the potential application of these NPs as novel biomaterial to treat bacterial infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.