Abstract

With the development of crystal growth techniques such as molecular beam epitaxy (MBE), it is now possible to fabricate modulation-doped superlattices consisting of alternating ultrathin layers of n-and/or p-type material abruptly separated by undoped material. At sufficiently high dopant concentrations these abrupt layers may be imaged in cross section by electron microscopy. Pennycook et al. and Treacy et al. have used high angle annular dark-field (HAAD) imaging in the scanning transmission electron microscope (STEM) to image low levels of dopants (∼1 at. %) in semiconductors. This work is concerned with imaging boron and arsenic doped layers in silicon at levels « 1 at.%.Fig. 1 shows a HAAD image of a B-Si superlattice at the <110> zone-axis orientation taken at 100 kV using a VG HB501UX STEM. The bright vertical layers are the B-doped regions, containing ∼4 x 1020 B/cm3. The horizontal lines are due to beam instability while the image was recorded. Fig.2 shows a line scan across the same superlattice, recorded by scanning the beam across the specimen in a direction perpendicular to the layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.