Abstract

Chronic hypobaric hypoxia induced muscle atrophy results in decreased physical performance at high altitude. Curcumin has been shown to have muscle sparing effects under cachectic conditions. However, the protective effects of curcumin under chronic hypobaric hypoxia have not been studied till now. Therefore, the present study aims at evaluating the effects of curcumin administration on muscle atrophy under chronic hypobaric hypoxia. Male Sprague Dawley rats were divided into four groups: Control (C)-normoxia exposed, Control Treated (CT)-normoxia exposed and administered with curcumin at a dose of 100 mg/kg body weight for 14 days, Hypoxia (H)-exposed to hypobaric hypoxia for 14 days and Hypoxia Treated (HT)-exposed to hypobaric hypoxia and administered with curcumin for 14 days. Oxidative stress, muscle protein degradation, proteolytic pathways, myosin heavy chain (MHC), CPK activity and muscle histology were performed in gastrocnemius muscle samples of the exposed rats. In addition, fatigue time on treadmill running was also evaluated to observe the effects of curcumin administration on physical performance of the rats. As previously shown, hypobaric hypoxia increased muscle protein degradation via upregulated calpain and ubiquitin-proteolytic pathways. An enhanced oxidative stress has been linked to upregulation of these pathways under hypoxic conditions. Curcumin administration resulted in reduced oxidative stress as well as reduced activity of the proteolytic pathways in HT group as compared to H group thereby resulting in reduced muscle protein degradation under hypobaric hypoxia. Histology of rat muscle revealed an increased number of muscle fibres in HT as compared to H group. Thus, increased number of muscle fibres and decreased muscle proteolysis following curcumin administration, lead to enhanced muscle mass under hypobaric hypoxia resulting in improved physical performance of the rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.