Abstract

1. Neurotransmitters released from nerve endings are inactivated by re-uptake into the presynaptic nerve terminals and possibly into neighbouring glial cells. While analysing the functional properties of alpha 1-adrenoceptors in the hypothalamus, we observed a high-affinity uptake process for noradrenaline in postsynaptic peptidergic neurones. 2. In primary hypothalamic cell cultures and in a hypothalamic neuronal cell line, [3H]-prazosin bound with high affinity and was displaced by unlabelled prazosin in concentrations of 10(-10) to 10(-7) M. However, at concentrations of unlabelled prazosin above 10(-7) M, there was a paradoxical increase in apparent [3H]-prazosin binding. 3. Methoxamine, an alpha 1-adrenoceptor ligand that is not subject to significant neuronal uptake, displaced [3H]-prazosin but did not cause the paradoxical increase in the apparent binding of [3H]-prazosin. Cooling the cells to 4 degrees C reduced the total amount of prazosin associated with the cells; under these conditions, methoxamine almost completely inhibited [3H]-prazosin binding to the cells. 4. In the presence of desipramine (DMI), unlabelled prazosin displaced [3H]-prazosin as before, but no paradoxical increase in apparent binding was seen above 10(-7) M. 5. The paradoxical increase of [3H]-prazosin binding was not observed in membrane preparations of hypothalamic neurones. These findings indicated that the paradoxical increase in apparent [3H]-prazosin binding was due to a cellular uptake process that becomes evident at high concentrations of the ligand. 6. DMI (10(-5) M) had no effect on the specific binding of [3H]-prazosin. The presence of alpha1-adrenoceptors was confirmed by binding of [125]-HEAT, but [3H]-idazoxan (an alpha2- ligand) did not bind to the cells.7. The uptake of prazosin obeyed the Michaelis-Menten model, with similar Km and Vmax values in both types of cultures.8. Noradrenaline was taken up with high affinity by both types of cultures. (+/-)-[3H]-noradrenaline uptake was reduced by DMI and by excluding sodium from the medium, indicating that this process has some of the properties of uptake 1. (+/-)-[3H]-noradrenaline uptake in the cell line was unaffected by testosterone.9. The measured uptake of (-)-noradrenaline in the cell line was considerably increased by blockade of catechol-omicron-methyl-transferase and monoamine oxidase, suggesting that (-)-noradrenaline is metabolized to lipophilic products that escape across the plasma membrane.10. Studies in rats, in which the noradrenaline isomer 6-hydroxydopamine was used, suggested that the post synaptic uptake process is operative in hypothalamic CRH and vasopressin neurones in vivo.11. The Km for (-)-noradrenaline was within the range for the high affinity uptake, process in noradrenergic neurones. Uptake takes place in concentrations at which noradrenaline activates alpha1-adrenoceptors.Removal of noradrenaline from the vicinity of the receptors may prevent desensitization,thus maintaining the responsiveness of postsynaptic neurones to the actions of the neurotransmitter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.