Abstract
Aerated channel reactors with a uniform field of aeration may display flow stratification and short-circuit phenomena in wastewater treatment systems. In this study, we present data suggesting that flow stratification is closely related to the aeration rate and the arrangement of aerators. A full-scale oxidation ditch, with a total volume of 6,500 m(3) and a membrane-diffused aerated zone of 60 x 7 x 5 m (length-width-depth), was selected for water velocity measurements. Two profiles of the oxidation ditch were studied in detail: the first one was at the end of the aerated zone and the second one at the end of the anoxic zone. The results of this work demonstrate that the horizontal water velocity at the end of the aerated zone displayed significant stratification, with maximum velocity near the water surface (0.5-0.7 m/s) and almost zero velocity at a depth of 2.5 m. At the end of the anoxic zone, water velocity was uniform and equal to 0.27-0.31 m/s. Increasing the aeration rate from 1,800 to 4,300 m(3)/h, almost 90% of the water flow was found to discharge through the upper-half of the channel reactor profile. Different options to mitigate flow stratification of the oxidation ditch are discussed in this paper.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have