Abstract

Excavations soils from construction sites, when included as Construction and Demolition Waste (CDW) can double waste amount and represent up to 80 % of waste composition. Limited recycling strategies are available for the material. In this work, soils with higher kaolinite contents were selected by X-ray diffraction (XRD) to produce high activity pozzolan. Twenty soil samples were collected in an inert CDW landfill, and seven samples (one-third of the total) containing higher kaolinite content were composed as a single sample for thermal and mechanical activation as pozzolan. At the temperature of 600 °C, low crystallinity kaolinite was transformed into amorphous material (37 % g/g) achieving the highest pozzolanic activity [consumption of 519 mg Ca(OH)2/g of the sample]. The replacement of Portland cement by calcined soil (6, 10 and 18 %) had no significant rheological impact on the water to solid ratio and optimal dispersant content and affected slightly the heat and setting time of the pastes; therefore, workable, and technically applicable. The Portland cement replacement by calcined soil, despite a fixed water to solid ratio of 0.3 led to an increase in the water to cement ratios and in the porosities of the pastes. Due to the pozzolanic reaction, 6 and 10%-replacement of Portland cement by calcined soil did not impair the tensile strength of the pastes when compared to that of Portland cement paste. A 42-MPa 28-day age blended Portland with calcined soil might be feasible to produce regarding Brazilian cement industry standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.