Abstract

Frequencies have been the most accurately measured physical quantity since the second was defined in 1967 based on the microwave atomic transition of a Cs atom. Recently, atomic clocks using optical frequency transitions have shown an order of magnitude better accuracy than microwave clocks. Thanks to their high accuracy and resolution, atomic clocks have become a new tool for investigations involving fundamental science and technology, such as the search for dark matter, gravitational wave detection, the temporal variation of fundamental constants, relativistic geodesy, quantum metrology, and the advanced Global Navigation Satellite System (GNSS). In addition, a redefinition of the second based on the optical frequency is expected. In this paper, we review the principles and applications of optical clocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.