Abstract

We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g(exp) = 2.001 041 596 (5). This is the most precise determination of an atomic g(J) factor so far. The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. The current theoretical value amounts to g(th) = 2.001 041 591 (7). Together experiment and theory test the bound-state QED contributions to the g(J) factor of a bound electron to a precision of 1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.