Abstract

In this paper, a finite element model updating (FEMU) method is proposed based on the response surface model (RSM) and genetic algorithm (GA) to establish a high-precision finite element (FE) model of space station scientific experiment racks. First, the fine solid and mixed FE models are established, respectively, and a comparison of the modal test results is conducted. Then, an orthogonal experimental design is used to analyze the significance of the parameters, and the variables to be modified are determined. The design parameters are sampled via the Latin hyperbolic method and are substituted into the FE model to obtain the modal parameters of the scientific experiment rack. The mapping relationship between the design and modal parameters is fitted by constructing the Kriging function, and the RSM is established. The design parameters of the scientific experiment rack are optimized via GA, and the initial FE model is updated, which has the advantage of improving the computing efficiency. Finally, the updated FE model of the experiment rack is verified by frequency sweep and random vibration tests. The experimental results show that the proposed approach has high precision and computing efficiency, and compared with the test results, the modal frequency errors of the updated model are within 5%, and the vibration response errors under random excitation of the updated model are within 7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call