Abstract

A novel fuzzy clustering method has been proposed here for separating the breast cancer data, which operates with reasonable accuracy, allows flexibility in dataset and is modestly time consuming. This method can be applied to any type of cancer data set with some initial labels to obtain high accuracy result in the classification of unlabeled samples. Further, the curse of dimensionality is not an issue for the proposed scheme as it can be applied to data having any number of dimensions or attributes. The DifFUZZY unsupervised clustering algorithm is applied at the initial stage, giving an accuracy of 96.28% over Wisconsin Breast Cancer Dataset (WBCD); the result is further improved to 98.14% by using the proposed Back-Retreat algorithm. The formed clusters are estimated using three internal cluster validation indices and the performance of the method is evaluated using receiver operating characteristic (ROC) curves. The clustering algorithm is compared with Fuzzy C-Means (FCM) algorithm and the results are compared with different classifiers and clustering techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.