Abstract

The ablated material of a frozen hydrogen isotope pellet which is injected into a hot tokamak plasma forms a high β plasmoid. This diamagnetic plasmoid is accelerated to the magnetic low field side of the torus. The high β plasmoid drift was directly observed byan optical diagnostic with high space and time resolution. Spectroscopic measurements of the emitted light allowed the density and temperature of the ablation cloud, and for the first time also of the drifting plasmoids, to be determined. The experiments give a newinsight into the dynamics of the formation of striations during the pelletablation; these striations cause the separation of the ablated material into a sequence of separated, drifting plasmoids. The influence of the drift on the mass deposition profile for high field side pellet injection is discussed. The plasmoid dynamics even influences the radial pellet motion, most probably owing to a rocket effect. The physical principles of the high β plasmoid drift are discussed and compared with the experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call