Abstract

Abstract Higgs Boson is an elementary particle that gives the mass to everything in the natural world. The discovery of the Higgs Boson is a major challenge for particle physics. This paper proposes to solve the Higgs Boson Classification Problem with four Machine Learning (ML) Methods, using the Pyspark environment: Logistic Regression (LR), Decision Tree (DT), Random Forest (RF) and Gradient Boosted Tree (GBT). We compare the accuracy and AUC metrics of those ML Methods. We use a large dataset as Higgs Boson, collected from public site UCI and Higgs dataset downloaded from Kaggle site, in the experimentation stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.