Abstract

The density, diffusion, and structural anomalies of the simple two-dimensional model of water were determined by Monte Carlo simulations. The rose model was used which is a very simple model for explaining the origin of water properties. Rose water molecules are modelled as two-dimensional Lennard-Jones disks with rose potentials for orientation dependent pairwise interactions mimicking formations of hydrogen bonds. The model can be seen also as a variance of silica-like models. Two parameters of potential in this work were selected in a way that (1) the model exhibits similar properties to Mercedes-Benz (MB) water model; and (2) that the model has real-like properties of water. Beside the known thermodynamic anomaly for the model we also found diffusion and structural anomalies. The orientational order parameters were calculated and maximum encountered for three and six-fold symmetry. For the MB parametrization, the anomalies occur in hierarchy order, which is a slight variation of the hierarchy order in real water. The diffusion anomaly region is the innermost in the hierarchy while for water it is the density anomaly region. In case of real water parametrization the most inner is the structural anomaly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call