Abstract

Although great efforts have been devoted to exploiting electrode materials with designed composition and nanostructure for high-performance electrochemical energy storage devices, it remains critically challenging to achieve hierarchically tubular architectures constructed with different low-dimensional building blocks due to the lack of appropriate synthetic strategies. Herein, hierarchically tubular structures composed of vertically aligned carbon nanosheets embedded with oxygen-vacancy enriched hollow Co3O4 nanoparticles (H-Co3O4/C) are prepared. Benefited from these unique features, H-Co3O4/C electrode containing 54 wt.% carbon and 46 wt.% Co3O4 exhibits high specific capacity of 328.0 C g−1 at 1 A g−1, good rate capability with 70% capacity retained at 20 A g−1, improved energy density of 8.3 Wh kg−1 at the power density of 4268.5 W kg−1 as well as remarkable stability for 10,000 charge-discharge cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.