Abstract

Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. However, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. In this study, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge2Sb2Te5) and a heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2–3 μA. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. This approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call